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1. INTRODUCTION

Let f be a function defined on the infinite interval [0, 00). The
Szasz-Mirakyan operator S n applied to f is

(1.1 )

where

In 1950 Szasz [1] proved 1:

THEOREM A. If f(t) is bounded in every finite subinterval of [0, 00), is
equal to O(tk

) for some k >°as t ..... 00, and is continuous at the point t = x,
then Sn(f, x) converges uniformly to f(x).

Later on, in 1971, GrOf [3] gave the following estimate for the rate of
convergence of Sn(f, x) when f(t) is continuous on [0, 00):

I Mirakyan 12] considered the partial sum 'l'm.n(f,x) of Sn(f,x),

'l'm.n(f, x) = ~o f( ~) Pk(nx)

and proved that limn~oc 'l'm.n(f,x) =j(x) uniformly in 10,r'j, if limn~" (m/n)=r> r' > 0.
We do not consider this matter in this paper.
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THEOREM B. If f is continuous on [0, 00) and is equal to O(eaX ) for
some a >°as X---> 00, then for all A> 0,

xE [O,A], (1.2)

where
wAf, f» == sup{lf(x + t) - f(x): Itl ~ f>, x E [0, A l}·

It is easy to see, by considering the function f (t) = It - x I at the point t = x
(x > 0), that this result is essentially the best possible.

This result was improved by Hermann [4] in 1977. He showed that (1.2)
holds if fit) = O(tat ) (a > 0). He proved in the same paper that the series in
(1.1) does not converge if f(t) d: tt!J(t)·t, where ~(t) is any monotonically
increasing function such that lim(-;CX) ~(t) = 00.

In this paper, we shall study S n(f, x) for functions of bounded variation
on every finite subinterval of [0, 00) and prove that S n(f, x) converges to
Hf(x +0) +f(x - 0)) under Hermann's condition on the magnitude of fby
giving quantitative estimates of the rate of convergence. We shall also prove
that our estimates are essentially best possible.

2. RESULTS AND REMARKS

Our main result may be stated as follows

THEOREM. Let f be a function of bounded variation on every finite subin
terval of [0, 00) and let f(t) = O(tat) for some a >°as t ---> 00. If x E (0, 00)
is irrational, then for n sufficiently large we have

+ 0(1)(4x)4aX(nx)-1/2 ( :) nx, (2.1)

where V~(g) is total variation of g on [a, b] and

gx(t) = f(t) - f(x+),

=0,

= f(t) - f(x-),

x < t < 00,

t=x,

°~ t < x.
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The right-hand side of (2.1) converges to zero as n -> 00 since the
continuity of gAt) at t = x implies that

Remarks. IfJ is not constant in any neighborhood of x then

(2.2)

for n sufficiently large. So in that case (2.1) becomes

O(x --1/2 )

+ 1/2 IJ(x+) - J(x- )1· (2.3)
n

If, in addition, J is continuous at x then (2.3) can be further simplified to

for sufficiently large n.
If, however, J is constant in some neighborhood of x, then since

TrX+xIVk .
v X-XIVk(f) = 0 for all except a fimte number of k's, we have

\~ v': +XIVk(J) = C_ x-xlVk
k= I

for some positive constant c (depending on x). Using this and (2.2), (2.1)
becomes

ISn(f, x) - J(x)1 <; _c(_4_+_x-,-)
nx

(2.5)

for n sufficiently large.
As far as the precision of the above estimates is concerned, we can prove

that (2.4) cannot be asymptotically improved. Consider the function
J(t) = It-xl (x> 0) at t=x. From (2.4) we have
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Since V~:~(f)= 2£5, it follows that

2(4+x) \n, 1 4(4+x)
ISn(f,x)-f(x)l~ ....... . IJ:~ .r.:

n k=1 V k V n

On the other hand, by a result of Szasz [I, p. 240],

ISn(f, x) - f(x)1 = ~o I ~ - x I pAnx)

. (nx)lnx)
= 2xe - n., ----:---'--,c--

Inx]!

(2x/ne4) 1/2

~ 1/2n

Hence, for the function f(t) = It - x I (x > 0), we have

(2x/ne4
)1/2 4(4 + x)

1/2 ~ ISn(f, x) - f(x)1 ~ 1'2n n

Therefore (2.4) cannot be asymptotically improved.

3. LEMMAS

229

The proof of our theorems is based on a number of lemmas. The first
lemma originated in one of the questions posed by Ramanujan in a letter of
January 16, 19 I3, to G. H. Hardy. A complete proof of this lemma was
given by Watson [51, Szego [6 j, and Karamata [71.

LEMMA I. If x is a positive integer, then

X x 2 x' I
1+-+-+ ... +-e(x)=-e'

I! 2! xl 2'

where e(x) lies between 1and 1.
For an arbitrary positive number x, we have

LEMMA 2. If x is a positive number, then

IxJ x k I
e- x 2.: ,=-+ O(l/VX)·

k=O k. 2
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Proof of Lemma 2. Set n = [x I. Define a function If/(t) on !n, n + 1) as

t E [n, n + 1).

Since

if n :::;; t < n + 1 we have

In particular

By Lemma I,

n k Ix] ! ]k
( )

_ -n \ ~ !!...- _ -Ix] "'.., ~
If/ n - e "-' k' - e '- k1

k=O • k=O'

1 [xJIX]
= 2 +e-lx1lXT! (1 - B([x])),

n ( + l)k ~ ([x] + l)k
If/((n+ 1)_)=e-(n+1) L n, =e-(lx)+ll,

k=O k. k~O k!

=~_e-(iXl+ll ([x] + l)[X)+1 B([] 1)
2 ([x] + I)! x + ,

also

e I
e-

k
-k' :::;; . ;::w:;

. V 2nk

hence

1 (1) Ix] x
k 1 (I

2- 0 /X B([x]+I):::;;e-
x f;o k! :::;;2+ 0 /X) (I-BOx])).

Lemma 2 now follows immediately from the fact that B(x) is bounded.
Lemma 2 has an evident application in probability. The function Sn(f, x)
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corresponds to the Poisson distribution, using the terminology of probability
theory; the distribution function is

with parameter a > O. If a = nx for some x > 0, then, by Lemma 2,

In.~1 enx(nx)k I (1)
P(X<nx)= '\ =-+0 --.

k'"='O k! 2 vnx
This result cannot be proved directly by applying the Central Limit
Theorem; there is a similar result when x is a positive integer (see, e.g.,
[8, p. 302 D.

The following lemma was proved by Szasz (see [I, p. 239/).

LEMMA 3. If x is a positive number, then

Lemma 4 is a Ramanujan-type result. The second part will not be needed
in the proof of our theorems. It is given here merely because of its own
interest.

LEMMA 4. (i) If 2x is a positive integer then

~ x k x 2X
'\ -=~(x)--

k~z.:+ I k! (2x)! '

where ~(x) lies between 2 ve - 3 and 1.

(ii) If x is a positive integer, then

where a(x) lies between 1and 1and f3(x) lies between 2(ve - 1) and 2.

Proof of Lemma 4. It is easy to see that, when 2x is a positive integer,

eX-I:Z:'oxk/k! x x 2

o(x) = x2x/(2x)! = 2x + 1 + (2x + 2)(2x + 1)

x 3

+ + ....
(2x + 3)(2x + 2)(2x + 1)
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We shall adopt this equality as the definition of c5(x) for all X? 1. It is
obvious that c5eD = 2 ve - 3 and limy~GO c5(x) = 1. Therefore (i) will be
proved if we can show that c5(x) is an increasing function. However, this
follows immediately from the fact that

j= 1,2,3,... ,

t E [n, n +1).

if x ~y.

Part (ii) is a direct consequence of Lemma 1 and (i).

LEMMA 5. If X? 1, then

where C1 = (2 ve - 3)/2 v:;re and C2 = Ve/4n.

Proof of Lemma 5. First, let us assume that n ~ x < n +1, where n is a
positive integer. Define a function 'II(t) on [n, n +1) as

'II(t) = e~t f ~
k="2n+ 1 k!'

Since

if n ~ t < n +1, we have

In particular

By Lemma 4 and Stirling's formula,

f n
k = e-[x) ~, [X]k

I/I(n) = e-
n

k=7,;+ 1 k! k=fr;'J+ 1 k!

[xj2[X]
= e~[x] c5([x]) (2[x])!
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1 (e)IXI 1?-- - --J(ix])
v1XT 4 4vn

? ~ (: r2~ J([x]);

If/ ((n++)_)=e- n- l12 V (n\~/2)k
k= 2n + 1

= e-lxl-1/2 V (Ix] + 1/2)k
k~2IxJ+ 1 k

= -r x l- 1/2(1 +15 ([ ]+~)' ) ([x] + 1/2)2 I
XI+I

e x 2 (2 [x I+ I)!

1 (e)IXI+1/2 1 (' 1') ')
<J[X]+1/24" 2vn l+J([X I+T,

<~ (:r4~(1+J([XI++)).

233

Therefore, when n <x < n +1, as J(x) lies between 2~ - 3 and 1, we
have

(3.1 )

Next, if n +1<x < n + 1 for some nonnegative integer n, we define If/(t) on
[n + 1, n + 1) as

t E [n +L n + 1).

Along the same lines, we can prove that, when n +1<x < n + 1 for some
nonnegative integer n, e -x Lk> 2x x k/ k! satisfies again (3.1). This completes
the proof.

The last lemma of this section is similar to a result in Hermann's paper
[4], but has a more precise estimate.

LEMMA 6. For any fixed positive numbers a and x,

(
k )(>(klnl 3 (2X+ 1 )(>(2x+llln 1 (e)X

\' - p (x) ~ - -- -
k > 2x n k ~ 2 n ~ 4

if n is sufficiently large.
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Proof of Lemma 6. Let

k> lx.

By a simple calculation we can show that

if n is sufficiently large. Hence, if k > lx,

')-,
.......

k>2x
(

k )a(k/I!) ([2X 1+ l)d<l 2X I+l}/1!n Pk(x)~3b!2X]+I=3 n P'2XJ+JX)

(
lx + 1 ) a(lx+ l)/I!

~ 3 n P]2X)+I(X), (3.2)

(3.3)

By Stirling's formula

P (x)::;:: _1_ (e1-lx/((2x)+ I)) +log(x/I(2x)+ l))'2x] + I
[2x] + I "0:: . rA:::". .

V 4nx

Since the function g(y) = 1 - y + logy is increasing on (O,! J and
g(~) = ~ - log 2 < 0, we have

P (x) & _1_ (eI/2-IOg2),2X]+ 1
[lxl+1 "0::. r:t:::.

V 47rX

~ _1_ (el/2-IOg2)2X

V4nx

1 ( e ) x

= V4nx 4 .

Lemma 6 follows immediately from (3.2) and (3.3).

If, in Lemma 6, we replace x by nx, then, when n is sufficiently large, we
get the inequality

(
k )a<kll!) 3 1 (e )/IX.L - pinx) ~ 2 (4x)4aX .~ 4

k>2l!x n V nXlr

which is what we really need in the proof of our theorem.
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4. PROOF OF THE THEOREM

For any fixed x E (0, 00), define gx as

235

gx(t) = f(t) - f(x+),

=0,

=f(t) - f(x-),

x < t < 00,

t=x,

°~ t < x.

(4.1 )

gx is continuous at t = x and inherits all the properties off Using (4.1), (1.1)
can be written as

S (f' ) = S ( ) f(x+) +f(x-) f(x+) - f(x-)
n ;, X n gx' X + 2 + 2

X (An(x)-Bn(x)),

where

A (x) = \' p (nx)=e-nx \' (nx)k
n "'--' k ~ k' '

k>nx k>nx .

B (x) = \' ()= -nx \' (nx)k
n __ Pk nx e ~ k' .

k<,nx k<,nx •

Hence

1 Sn(f, x) - Hf(x+) + f(x-))I ~ 1 Sn(gx' x)1 + 1If(x+) - f(x-)I

X IAn(x) - Bn(x)l. (4.2)

By Lemma 2,

and

Therefore, for the second summand on the right-hand side of (4.2) we have

+If(x+) - f(x- )IIAn(x) - Bn(x)1 = 0 ( vk )If(x+) - f(x-)I (4.3)
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and our theorem will be proved if we establish that

+ 0(1)(4x)4a X(nx)-I/2 (:rx

(4.4)

for suffcientiy large n.
To do this we first observe that Sn(gx' x) can be written as a

Lebesgue-Stieltjes integral

Sn(gx'x)= r; gAt)dtKn(x,t), (4.5)
o

where the kernel Kn(x, t) is defined by

=0,

0< t < 00,

t= 0,

the so-called Poisson distribution of probability. We decompose the integral
on the right-hand side of (4.5) into three parts, as

where

I
x - x /';;;

Ln(f, x) = gx(t) dtKn(x, t),
o

xtxlV;;
Mn(f, x) = f gx(t) dtKn(x, t),

x-xiV;;

We shall evaluate consecutively Mn(f, x), Ln(f, x), and Rn(f, x). For
t E [x - x/vn, x +x/vn],

I gAt)1 = I gAt) - gAx)l::;;; v::=;;a-(gx)'

Hence
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therefore

for any [a, b1c:; [0,(0),

(4.7)

Next, we evaluate Ln(f, x). The method used here is similar to the
approach used by Bojanic and Vuilleumier [9].

Using partial integration with y = x - x/Vii, we have

.y

LnU; x) = gx(Y+) Kn(x,y+) - t Kn(x, t) dt gAt),

where KAx, t) is the normalized form of Kn(x, t). If °<y < 00, then
Kn(x, Y+) = Kn(x, y) and

1gAy+)1 = 1gAy+) - gAx)1 (: V~+(gx)'

1Ln(f, x)1 (: V~+(gJ Kn(x,y) +rKn(x, t) dt(-V:(gx))'
o

Since Kn(x, t) (: Kn(x, t) on (0, (0) and since by Lemma 3,

Kn(x, t) = L Pk(nx) (: x/n(t - X)2,
k<:;nt

we have

0(: t < x,

1 -nx T7{) +( )+T' e Yo gx·

Since, for nx > 0,

1
e- nx <

nx

fi40/40/H
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and

it follows that
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: J:+ (t ~X)2 dt(-V:(gJ) + n~ vg+(gx)

= : J: (t ~ X)2 dt(-V:(gJ),

Using partial integration again, we have

Hence

Replacing the variable t in the last integral by x - x/Vi, we find that

Ix-x/V;; dt 1 fn
o V:(gJ (x _ t)3 = 2x 2 1 V~-x/Jt(gJ dt

Thus

2 n

,,;;; - L V~-x/lk(gJ·
nx k=1

(4.8)

Finally, we evaluate Rn(f, x). Let z = x +x/vn and define Qn(x, t) on
[0, 2x] as

Qn(x, t) = 1 - Pn(x, t-),

=0,

0";;; t < 2x,

t= 2x.
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+f) gx(t) dtKn(x, t)
2x

239

(4.9)

Using partial integration for the first term on the right-hand side of (4.9), we
get

2x

R In = gxCz-) Qn(X' z-) +f Qn(X' t) d( gx(t),
z

where Qn(x, t) is the normalized form of Qn(x, t). Since Qn(x, z-) = Qn(x, z),°~ z < 1, and IgxCz-)1 ~ V~-(gx)' we have

2x

IRlnl~ V~-(gx)Qn(x,z)+f Qn(x,t)d(V~(gx)·
z

Since by Lemma 3

x < t < 2x,

and since Qn(x, t) ~ Qn(x, t) on [0,2x), we have

Next, the inequality

which follows from Lemma 5 and the identity
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imply
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Integrating by parts the last integral, we get

flX I d VI (g ) = V;X(gx) _ V~-(gx)
z (t-X)l I x x Xl (Z-X)l

lx dt
+ 2f

z
V~(gx) (t _ X)3 .

Hence

X (V;X(gx) lx I dt)
\R1nl<;n Xl +2{ VX(gX) (t-X)3 .

Replacing the variable in the last integral by X +x/Vt, we find that

lx dt 1 fn
f VI(g) =- vx+x1J/(g)dt
z x x (t _ X)3 2xl 1 x x

Therefore

IR1nl<;_1- (V;X(gX) + £ V;+XIJk(gJ)
nx k~1

<;~ £ V;+xIJk(gx). (4.10)
nx k=1

The evaluation of R ln is relatively easy. By Lemma 5, we have

But
n

IgA2x)1 <; I V;+xIJk (gx)
k=l

and

1 1

Jnxn (4/et X <; nx·
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(4.11 )

Finally, by Lemma 6 and the assumption that f(t) = O(tal) (a > 0) as
t -. 00, we see that for n sufficiently large,

(
k ) a(kln)

IR 3n l <.M L - h(nx)
k>2nx n

3M 1 ( e .)nx<. _ (4x)4aX _
2 Jnxn 4

(4.12)

for some positive constant M.
Hence, from (4.10), (4.11), and (4.12), we obtain for n sufficiently large,

Equation (4.4) now folows from (4.5}-(4.8), (4.13), and the fact that
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